

Terahertz Pulse Propagation in Plastic Photonic Crystal Fibers

H. Han, H. Park, M. Cho, J. Kim, I. Park*, and H. Lim*

Department of Electrical and Computer Engineering, Pohang University of Science and Technology,
San-31 Hyoja-Dong Nam-Gu, Pohang, Kyungbuk 790-784, Korea, e-mail: hhan@postech.ac.kr

* Department of Electrical and Computer Engineering, Ajou University

Abstract — Guided-wave single-mode propagation of sub-ps terahertz (THz) pulses in a plastic photonic crystal fiber has been experimentally demonstrated for the first time to the best of our knowledge. The plastic photonic crystal fiber is fabricated from high density polyethylene tubes and filaments. The fabricated fiber exhibits the low loss and relatively low dispersive propagation of THz pulses within the experimental bandwidth of 0.1 ~ 3 THz. The measured loss and group velocity dispersion are less than 0.5 cm^{-1} and $0.3 \text{ ps/THz}\cdot\text{cm}$ above 0.6 THz, respectively.

I. INTRODUCTION

The recent progress in terahertz (THz) wave generation and detection techniques has generated much interest in low loss THz waveguides which are essential for the construction of compact THz devices and measurement systems. However, most of the present THz systems rely on free space propagation and processing of THz waves due to the virtual absence of low loss waveguides at THz frequencies. The conventional guiding structures such as microstrips, coplanar striplines, and coplanar waveguides fabricated on semiconductor substrates can support only a limited bandwidth due to their excessive dispersion and loss. For example, the power absorption coefficients of coplanar striplines and coplanar waveguides are $\alpha \approx 20 \text{ cm}^{-1}$ at $f = 1 \text{ THz}$, where the frequency dependence on the loss can be expressed as $\alpha' = r^2 \text{ cm}^{-1}$ with $r = 2 \sim 3$ [1], [2].

Recently, there have been several reports on quasi-optical techniques for the efficient and broadband coupling of free space THz radiation into low loss waveguides such as metal, sapphire fiber, and plastic ribbon waveguides [3]-[6]. The power absorption coefficients of these THz waveguides are found to be less than 1 cm^{-1} in the THz frequency region. On the other hand, the photonic crystal fiber (PCF) has engendered growing interest over the past few years since it offers the opportunity to fabricate optical waveguides with enhanced linear and nonlinear optical properties. For example, compared to the conventional optical fibers, the PCF exhibits broadband single-mode operation [7] and air guiding for the reduced nonlinearity and dispersion [8]. A

typical PCF consists of a waveguiding core and a spatially periodic cladding region. The core is formed by introducing a defect into the photonic crystal structure to create a localized region with optical properties different from the surrounding cladding region.

The guiding mechanism of PCFs depends on whether the effective refractive index of the core is higher or lower than that of the cladding. PCFs with the high index cores guide light by the total internal reflection while the waveguiding in ones with the low refractive index defects is achieved by the photonic bandgap effect [8]. So far most of PCFs have been fabricated from silica due to their applications in optical domain. However, the material loss of silica is prohibitively high at THz frequencies. Thus for THz applications, low loss materials such as plastics need to be used for the fabrication of THz PCFs.

In this work, we experimentally demonstrate the fabrication of a plastic photonic crystal fiber (PPCF). Furthermore, we experimentally show that the fabricated PPCF exhibits low loss single-mode propagation of sub-ps THz pulses and reasonably low dispersion.

II. FABRICATION

The PPCF was fabricated from 500 μm -diameter high density polyethylene (HDPE) tubes and filaments. The HDPE tubes were stacked to form a two-dimensional triangular photonic crystal, and then fused at $\sim 135 \text{ }^\circ\text{C}$ in a conventional furnace. The lattice constant of the PPCF was 500 μm , and the tube thickness was 50 μm , corresponding to an air fill factor of 0.673. The total length of the fiber was approximately 2 cm-long. At the center of the triangular lattice structure, a single solid HDPE filament was inserted to create a high refractive index defect.

Shown in Fig. 1 are the optical micrograph of a photonic crystal (a) and the theoretically calculated field distribution of the fundamental guided mode at 1 THz (b). Since the PPCF used in this work has large air holes, it is crucial to use a full vector model for the field calculation [9]. We used the well-known localized mode expansion

method using Hermite-Gaussian and plane waves [10], [11]. It can be seen from Fig. 1(b) that the THz field is highly confined in the defect at 1 THz. Further calculation shows that this field confinement increases as the frequency increases.

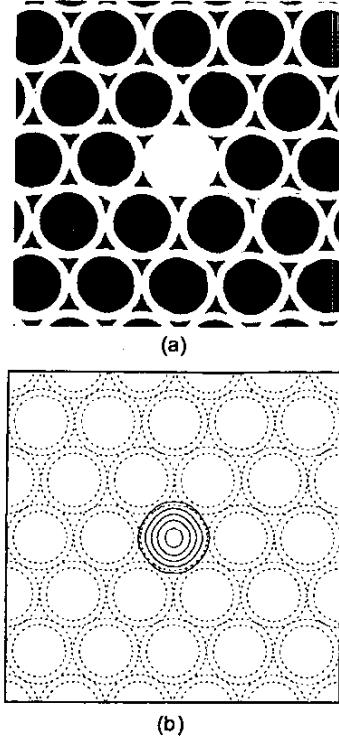


Fig. 1. (a) Optical micrograph of a triangular photonic crystal fiber with a high index defect, and (b) calculated field distribution of a fundamental guided mode at 1 THz where the field is strongly confined in the defect.

III. RESULTS AND DISCUSSION

The experimental setup for the measurements of THz pulse transmission through the PPCF is shown in Fig. 2, and is similar to that of other THz waveguides measurements [3]-[6]. It consists of a THz transmitter/receiver and a lens-fiber-lens beam steering/coupling system. The THz pulse was generated via a standard optical rectification method using a (111) semi-insulating GaAs substrate. The generated THz signal is then detected by a photoconductive antenna fabricated on a low-temperature grown GaAs. The PPCF is placed at the THz beam waist between two off-axis parabolic mirrors for efficient coupling in and out of the fiber core. By using a hyperhemispherical silicon lens, the THz beam is focused to a nearly frequency-independent beam waist of ~ 500 μm at the entrance face of the PPCF. An identical arrangement is used at the exit face of the PPCF.

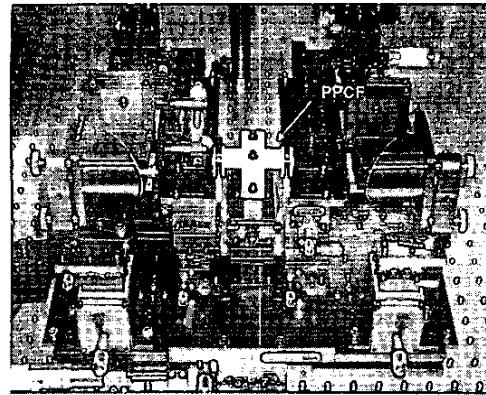


Fig. 2 Experimental setup for the measurements of THz pulse transmission through a PPCF.

A temporal shape of the THz pulse transmitted through the PPCF is shown in Fig. 3, where the inset shows the input pulse measured by removing the PPCF and moving two silicon lenses to back-to-back position. The dotted and solid lines represents experimentally and theoretically obtained results, respectively. The temporal width of the input pulse is measured to be approximately 0.8 ps (FWHM). As can be seen in the figure the incident THz pulse is chirped to approximately 5 ps (FWHM) after transmission through the PPCF. This corresponds to the average group velocity dispersion (GVD) of approximately 2 ps/THz·cm at the center frequency of 0.4 THz. However, a larger GVD can be observed from the highly chirped waves in the lower frequency components at the leading edge of the pulse. This leading part of the transmitted pulse shows normal dispersion whereas the trailing part of the pulse exhibits anomalous dispersion.

The observed dispersion is mainly due to the waveguide dispersion in the PPCF. The material dispersion of the HDPE contributed very little to the total dispersion of the PPCF. The theoretical curve (solid line) was obtained assuming the single fundamental guided mode where a frequency-independent refractive index of $n = 1.5$. As can be seen in the figure the obtained theoretical result is in good agreement with the experiments.

Shown in Fig. 4 are the amplitude spectra of the THz pulses after propagating through the 2 cm-long PPCF, showing that the available spectrum extends from 0.1 to 3 THz where dotted line represents the input wave spectrum, and solid dots and line represent the measured and calculated transmission spectra, respectively. The small

ripples in the transmission spectra are due to the Fabry-Perot effect from the air gap between the PPCF and the silicon lenses. The experimental result shows that the measured spectrum below 0.2 THz is significantly reduced. This is due to the large spatial mode mismatch between the focused Gaussian beam and the PPCF guided mode at low frequencies. At 0.2 THz, the effective mode size of the PCF is ~ 3 mm. This is much larger than that of the focused Gaussian beam.

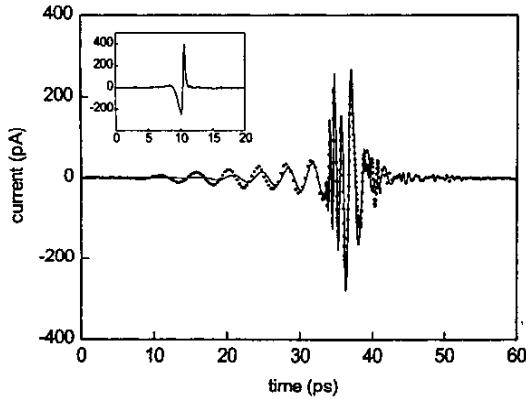


Fig. 3. Measured (dots) and calculated (solid line) pulses after propagating through a 2 cm-long plastic photonic crystal fiber. The inset shows the measured input pulse.

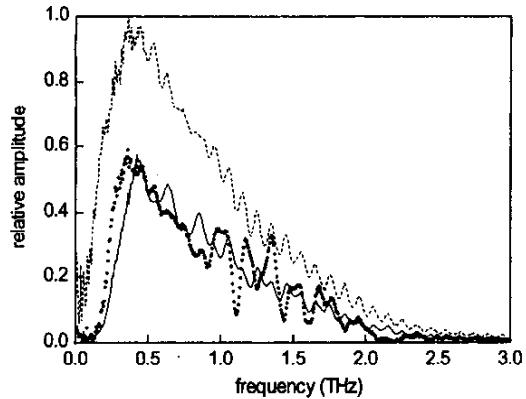


Fig. 4. Amplitude spectra of measured (dots) and calculated (solid line) pulses after propagating through a 2 cm-long plastic photonic crystal fiber. The dashed line shows the input pulse spectrum.

It is noted that there is no sharp low frequency cutoff for dielectric waveguides such as PCFs with high index defects. The measured insertion loss of the PPCF including the mode mismatches and the Fresnel reflection

losses was measured to be less than 5 dB above 0.4 THz. The upper limit of the power attenuation coefficient of the PPCF was estimated to be less than 0.5 cm^{-1} over the measured spectrum. The attenuation of a guided mode of the HDPE PCF depends on the field confinement and the material absorption coefficient.

Based on our measurements and analysis of the data, the main contribution of the transmission loss is believed to be the material absorption loss. Although the HDPE is one of the most widely used materials for lenses and window applications in the THz frequency region due to its transparency, machinability, stability and availability, the published data on the absorption coefficient of the HDPE vary from sample to sample. Depending on the amount of impurities incorporated during the manufacturing processes, the absorption coefficient of the HDPE can be as high as a few cm^{-1} . However, with a certain fabrication method, the HDPE has been shown to have an absorption coefficient as small as $\sim 0.2 \text{ cm}^{-1}$ around 1 THz [12], [13]. This suggests that the attenuation in the PPCFs can be further reduced with a use of better HDPE and improved PPCF fabrication technique. The effective and group indices of the PPCF are shown in Fig. 5 as dots and triangles, respectively. The solid and dotted lines are the theoretically calculated results for the corresponding experimental data. One can see that both effective and group indices approach the refractive index of the HDPE core ($n = 1.5$) at the high frequency limit while they approach that of the cladding ($n_c = 1.163$), the average refractive index of air and HDPE, at the low frequency limit. This is simply because the field confinement in the high index core gets tighter as the frequency increases.

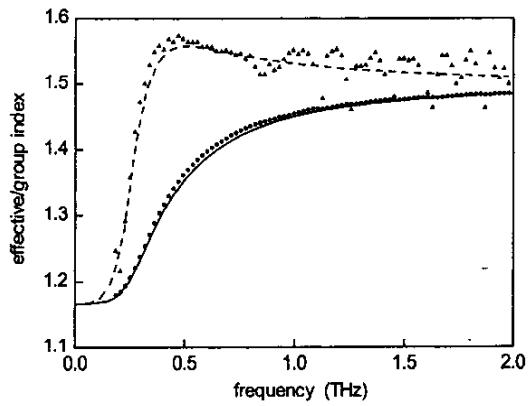


Fig. 5. Effective (dots) and group (triangles) indices. The solid and dashed lines show the theoretical values of effective and group indices, respectively.

Shown in Fig. 6 is the calculated GVD curve. In the low frequency part of the spectrum below 0.4 THz, the GVD is large, where the maximum GVD of ~ 14 ps/THz-cm occurring around 0.25 THz was deduced from the data. Furthermore, the zero GVD was measured to be around 0.5 THz and the GVD above 0.6 THz was measured to be less than -0.3 ps/THz-cm.

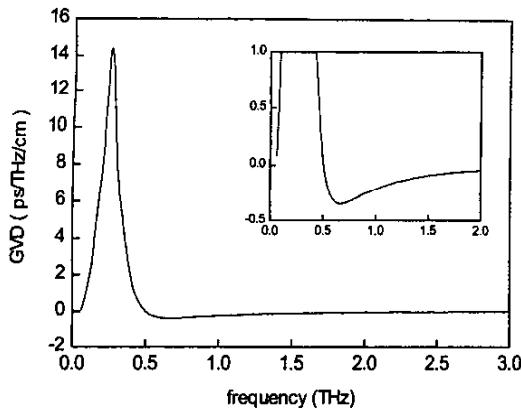


Fig. 6. Group velocity dispersion of a PPCF

IV. CONCLUSION

We have experimentally demonstrated the efficient guided-wave propagation of THz pulses through a PPCF within the bandwidth of $0.1 \sim 3$ THz. The fabricated PPCF is shown to be low loss and relatively low dispersive where the loss and GVD were measured to be less than 0.5 cm^{-1} and -0.3 ps/THz-cm above 0.6 THz, respectively. Such PPCFs have the promise of ultralow loss, mechanically flexible interconnect channels for compact THz devices and systems, especially in frequency-domain investigations with advantages similar to optical fibers.

ACKNOWLEDGEMENT

This work has been supported by the Creative Research Initiatives Program of the Korean Ministry of Science and Technology.

REFERENCES

- [1] M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, "Terahertz attenuation and dispersion characteristics of coplanar transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. 39, pp. 910-916, June 1991.
- [2] H. -M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnider, W. Heinrich, R. Hey, and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," *Appl. Phys. Lett.*, vol. 70, pp. 2233-2235, April 1997.
- [3] R. W. McGown, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," *Opt. Lett.*, vol. 24, pp. 1431-1433, October 1999.
- [4] S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," *Appl. Phys. Lett.*, vol. 76, pp. 1987-1989, May 2000.
- [5] R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," *J. Appl. Phys.*, vol. 88, pp. 4449-4451, October 2000.
- [6] G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," *J. Opt. Soc. Am. B* 17, 851, May 2000.
- [7] T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endless single-mode photonic crystal fiber," *Opt. Lett.*, vol. 22, 961, July 1997.
- [8] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, *Science* 285, 1537, September 1999.
- [9] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: an efficient modal model," *J. Lightwave Technol.*, vol. 17, pp. 1093-1102, June 1999.
- [10] D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized fuction method for modeling defect modes in 2-D photonic crystals," *J. Lightwave Technol.*, vol. 17, pp. 2078-2081, November 1999.
- [11] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fiber," *J. Lightwave Technol.*, vol. 18, pp. 50-56, January 2000.
- [12] G. Gruner, ed., *Millimeter and Submillimeter Wave Spectroscopy of Solid*, Berlin: Springer, 1998.
- [13] G. W. Chantry, J. W. Fleming, and P. M. Smith, "Far infrared and millimeter-wave absorption spectra of some low-loss polymer," *Chem. Phys. Lett.*, vol. 10, pp. 473-477, August 1971.